Algorithms counting monotone Boolean functions

نویسندگان

  • Robert Fidytek
  • Andrzej Wlodzimierz Mostowski
  • Rafal Somla
  • Andrzej Szepietowski
چکیده

We give a new algorithm counting monotone Boolean functions of n variables (or equivalently the elements of free distributive lattices of n generators). We computed the number of monotone functions of 8 variables which is 56 130 437 228 687 557 907 788.  2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems

We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}. For a class F of boolean functions and a class G of graphs, an (F ,G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transit...

متن کامل

A Lower Bound for Boolean Permanent in Bijective Boolean Circuits and its Consequences

We identify a new restriction on Boolean circuits called bijectivity and prove that bijective Boolean circuits require exponential size to compute the Boolean permanent function. As consequences of this lower bound, we show exponential size lower bounds for: (a) computing the Boolean permanent using monotone multilinear circuits ; (b) computing the 0-1 permanent function using monotone arithmet...

متن کامل

Counting inequivalent monotone Boolean functions

Monotone Boolean functions (MBFs) are Boolean functions f : {0, 1} → {0, 1} satisfying the monotonicity condition x ≤ y ⇒ f(x) ≤ f(y) for any x, y ∈ {0, 1}. The number of MBFs in n variables is known as the nth Dedekind number. It is a longstanding computational challenge to determine these numbers exactly – these values are only known for n at most 8. Two monotone Boolean functions are inequiv...

متن کامل

Function Evaluation Via Linear Programming in the Priced Information Model

Wedetermine the complexity of evaluatingmonotone Boolean functions in a variant of the decision tree model introduced in [Charikar et al. 2002]. In thismodel, reading different variables can incur different costs, and competitive analysis is employed to evaluate the performance of the algorithms. It is known that for a monotone Boolean function f, the size of the largest certificate, aka PROOF ...

متن کامل

Closure Operators for ROBDDs

Program analysis commonly makes use of Boolean functions to express information about run-time states. Many important classes of Boolean functions used this way, such as the monotone functions and the Boolean Horn functions, have simple semantic characterisations. They also have well-known syntactic characterisations in terms of Boolean formulae, say, in conjunctive normal form. Here we are con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2001